समानान्तर चतुर्भुज

स्वतन्त्र विश्वकोश, नेपाली विकिपिडियाबाट
Jump to navigation Jump to search

समानान्तर चतुर्भुज: जुन चतुर्भुजका सम्मुख भुजाहरू एकआपसमा समानान्तर हुन्छन्, त्यस्तो चतुर्भुजलाई नै समानान्तर चतुर्भुज भनिन्छ।

समानान्तर चतुर्भुजका केहि सुत्रहरू यस्ता छन्:[सम्पादन गर्ने]

समानान्तर चतुर्भुजको क्षेत्रफल:आधार(b)×उचाइ(h) समानान्तर चतुर्भुजको परिमिति:२(लम्बाई×उचाइ)

यसका केहि साध्यहरू यस प्रकार छन्:[सम्पादन गर्ने]

साध्य १) समानान्तर चतुर्भुजका सम्मुख भुजाहरू र सम्मुख कोणहरू बराबर हुन्छन्।

साध्य २) सम्मुख भुजाहरू बराबर भएको चतुर्भुज समानान्तर चतुर्भुज हुन्छ।

साध्य ३) सम्मुख कोणहरू बराबर भएको चतुर्भुज समानान्तर चतुर्भुज हुन्छ।

साध्य ४) दुईओटा बराबर र समानान्तर रेखाखण्डका एकैतिरका छेउ छेउका बिन्दुहरू जोड्ने रेखाखण्डहरू पनि बराबर र समानान्तर नै हुन्छन्।

साध्य ५) बराबर र समानान्तर रेखाखण्डका विपरीततिरका छेउ छेउका बिन्दुहरू जोड्ने रेखाखण्डहरू आपसमा समद्धिभाजन हुन्छन्।

साध्य ६) समानान्तर चतुर्भुजका विकर्णहरू आपसमा समद्धिभाजन हुन्छन्।

साध्य ७) यदि कुनै चतुर्भुजका विकर्णहरू आपसमा समद्धिभाजन हुन्छन् भने उक्त चतुर्भुज समानान्तर चतुर्भुज हुन्छ।

सन्दर्भ सामग्री[सम्पादन गर्ने]